Gradient Flows, Convexity, and Adjoint Orbits

نویسندگان

  • Xuhua Liu
  • Huajun Huang
چکیده

This dissertation studies some matrix results and gives their generalizations in the context of semisimple Lie groups. The adjoint orbit is the primary object in our study. The dissertation consists of four chapters. Chapter 1 is a brief introduction about the interplay between matrix theory and Lie theory. In Chapter 2 we introduce some structure theory of semisimple Lie groups and Lie algebras. It involves the root space decompositions for complex and real semisimple Lie algebras, Cartan decomposition and Iwasawa decomposition for real semisimple Lie algebras and Lie groups. They play significant roles in our generalizations. In Chapter 3 we introduce a famous problem on Hermitian matrices proposed by H. Weyl in 1912, which has been completely solved. Motivated by a recent paper of Li et al. [34] we consider a generalized problem in the context of semisimple as well as reductive Lie groups. We give the gradient flow of a function corresponding to the generalized problem. This provides a unified approach to deriving several results in [34]. Chapter 4 is essentially a brief survey on some generalized numerical ranges associated with Lie algebras. The classical numerical range of an n×n complex matrix is the image of the unit sphere in C under the quadratic form. One of the most beautiful properties is that the numerical range of a matrix is always convex. It is known as the Toeplitz-Hausdorff theorem. We give another proof of the convexity of some generalized numerical range associated with a compact Lie group. The Toeplitz-Hausdorff theorem becomes a special case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Integrable Gradient Flows

In this paper we exhibit the Toda lattice equations in a double bracket form which shows they are gradient flow equations (on their isospectral set) on an adjoint orbit of a compact Lie group. Representations for the flows are given and a convexity result associated with a momentum map is proved. Some general properties of the double bracket equations are demonstrated, including a discussion of...

متن کامل

Gradient Flows on Kač-moody Algebras and the Periodic Toda Lattice

Abstract. In this paper, we provide a new formulation for the generalized periodic Toda lattice. Since the work of Kostant, Adler and Symes, it has been known that the Toda lattice is related to the structure of simple Lie algebras. Indeed, the non-periodic and the periodic Toda lattices can be expressed as Hamiltonian systems on coadjoint orbits: the former of a simple Lie group and the latter...

متن کامل

Magnetic Flows on Homogeneous Spaces∗

We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular (co)adjoint orbits of compact Lie groups. We give the proof of the non-commutative integrability of flows and show, in addition, for the case of (co)adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, wh...

متن کامل

Magnetic Geodesic Flows on Coadjoint Orbits

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

ar X iv : m at h - ph / 0 60 20 16 v 1 7 F eb 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012